# Improving the low voltage ride through capability of wind generator system using crowbar and Battery Energy storage system

<sup>1</sup>Ms.Ch.laxmi, <sup>2</sup>Ms.K.Sree Latha, <sup>3</sup>Dr.Himani <sup>1</sup>Asst.prof(EEE) GNITC, Hyderabad <sup>2</sup>Assoc.Prof(EEE) GNITC, Hyderabad <sup>3</sup>Prof & HOD(EEE) Aurora's Engg ,Bhongir

**ABSTRACT:** To improve the low voltage ride-through (LVRT) capability of a wind turbine (WT) with Doubly Fed induction generator (DFIG). This paper deals with the implementation of a new model on the rotor side for enhancing the voltage dip during faults. The method comprises of auto switching Crowbar protection on to the rotor side for the enhancement of voltage and also a battery energy storage system (BESS) in the dc link side to reduce the ripples by absorbing the redundant power stored in the DC link capacitor. Generally, premature removal of crowbar does not achieve good results and post late removal will make the machine to absorb more reactive power from the grid so, an automatic Crowbar protection is been employed which automatically works according to the requirement. The combined protection and control strategy is being proposed in the simulation results.

**INDEXTERMS:** Doubly fed induction generator (DFIG), low voltage ride-through (LVRT), crowbar, battery energy storage system (BESS), Wind turbine (WT).

# I. INTRODUCTION

In recent years, wind energy has become one of the most important and promising sources of renewable energy, which demands additional transmission capacity and better means of maintaining system reliability. The evolution of technology related to wind turbines that present many advantages compared to the fixed speed wind turbines. These wind energy conversion systems are connected to the grid through Voltage Source Converters (VSC) to make variable speed operation possible. The system that will be analyzed is a variable speed wind generator is directly connected to the grid while the rotor is connected through a back-toback converter which is designed to stand only a fraction of the generator rated power. The advantages of the active and reactive power regulate independently capacity and excitation converters requires small capacity, the doubly fed induction generator (DFIG) has been widely used in the wind power system [1] - [2]. The voltage drop on the grid side will still connect the doubly fed induction generator to the grid. In order to achieve this need to overcome the low voltage ride through (LVRT) problem. When a sudden voltage drop[4] in the power grid, the stator and rotor will induce over-current due to the electromagnetic coupling of the electromagnetic coupling of the double-fed generators, this time the output of grid-side converter is limited, this time the output of the grid-side converter is limited, the energy accumulated in the DC side will cause DC-side voltage increase. To protect the rotor side converter, should switch the protective devices (crowbar)[5] to short circuit the rotor of the doubly-fed generator, in order to protect the DC side capacitors and to enable the DC-side voltage stability generally use unloading unit to consume the excess energy of the DC side [4], [5] present a storage battery, but only analyzed smooth out the output powers or to maintain a desirable power output as the wind speed varies. A control scheme which is auto-switching the crowbar according to the size of the rotor current is adopted for the crowbar protection to decrease the adverse effects on the system which is caused by the Crowbar premature or too late removable. A cascaded control scheme is applied for the battery energy storage devices to attenuate the transients DC voltage ripple in the DC bus when voltage sags in power failure situations. This paper presents a new approach for and control strategy to improve the transient performance of the doubly fed induction generator DFIG. In this the wind form consist of six 1.5MW wind turbines is simulated to verify this method. Each DFIG is equipped with an active crowbar and a battery energy storage device.

# II. MODELLING OF THE WIND TURBINE.



Fig 1: A Wind Turbine with DFIG.

Figure 1 schematically shows the proposed DFIG based wind turbine. DFIG uses power electronics converter. The converter connected to the rotor and stator will be directly connect to the grid compared to full converter. This is better as only 20%-30% of the total power goes through the converter and so design will be of smaller size, thus low cost and low power electronic losses. Stator ids directly connected to grid and rotor is connected to power electronics by means of slirings & brushes. The rotor current is regulated by the power converter to control the electromagnetic torque and field current and thus the stator output voltage. DFIG can operate in sub-synchronous or in super sychronous operation modes due to capability of converter to operate in bi-directional operation power mode.

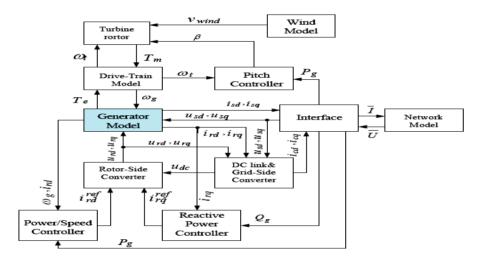


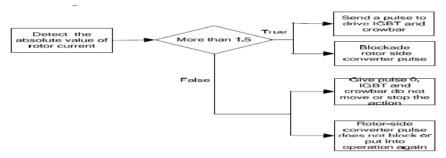
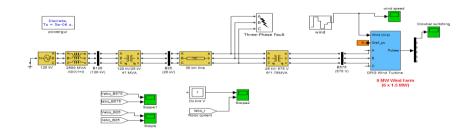

Fig 2 control block-diagram of DFIG Wind Turbine.

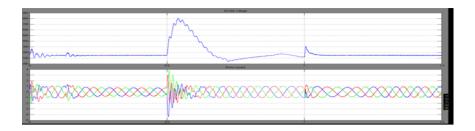
Figure 2 schematic diagram of generator block diagram of DFIG. The parts are generator, drive train, turbine motor, grid-side converter with DC-link capacitor. Pitch-controller and the rotor side converter, while the grid-side converter is used to control the dc voltage of DC-link.

## III MODELLING AND CONTROL OF COMBINED SYSTEM.

Modelling of Active Crowbar and Battery Energy Storage System. The Proposed DFIG based wind turbine with active crowbar and battery energy storage system. An active crowbar is composed of Three-phase diode bridge in series with a bypass resistor and an IGBT power switch. A switching function x is defined for the power switch, which makes the value 1 (Activated) when the switch is closed and 0 for its open state (Deactivate). The dynamic behaviour of such system during grid faults is very sensitive to the value of the bypass resistor, the resistor should be properly selected to limit the over current and also to avoid large voltage ripples in DC-link. Th battery energy stores energy in the electromechanical form, and is the most widely used for energy storage in a variety of application. When the battery is discharging state is positive while in charging state is negative. The state- of- Charge is 100% and for an empty battery is 0%. The wind turbine is connected to the DFIG through a gearbox and a coupling shaft system. The three phase rotor windings are connected to the grid through back to back four quadrant PWM power converters and three phase stator winding is directly connected to the grid. Power captured by the wind turbine is connected to the DC link capacitor through a bidirectional DC/DC converter. Protection and Control of combined system.

A combined protection scheme with Direct Torque Control (DTC) statergy [6] with feed farward comensation is adoped for the wind turbine operating under normal grid conditions. When the grid fault occurs, the crowbar is triggered if the overvoltage in the DC bus or the over-current in rotor winding exceeds the corresponding threshold value. In the mean time, rotor-side converter will be disconnected from rotor winding by cutting off the pulses of the power switches in the rotor side converter. During this fault interval, the controllability of the DFIG will behave as a squirrel cage induction generator with a variable rotor resistance and absorb large amount of reactive power from the grid which will lead to the system voltage dip further. An algorithm for the voltage dip detection caused by all types of faults is chosen. With the proposed control stratergy, the Crowbar is activated and the rotor current exceeds the predefined threshold value 1.5pu. The crowbar will cut off and the rotor side converter is restarted if the rotor current decreases to be less than a safety value.



Fig 3 control stratergy of the Crowbar

The control stratergy is shown in fig 3. The objective of the converter side converter is to maintain the DC bus voltage stable. Assume that the power losses in the three converters and the harmonics due to swithching action are ignored.

## **IV. SIMULATION RESULTS.**

A wind farm consisting of 9MW wind turbine driven DFIGs with the battery energy storage system is simulated using Matlab/Simulink to verify the effectiveness of the proposed system combined protection and control stratergy including the auto swithching control for the operation of crowbar protection and the cascade control stratergy under fault condition. The digram shown in figure 4. In the active crowbar design, a reasonable selection of resistance of the discharge resistors is important. A larger quantity of resistance value may the transient decay faster, but the larger resistance value cause Over-voltage the rotor side, so that counter-charge DC bus capacitor, and may also damage the rotor side converter. After comprehensive consideration and simulation comparision, the discharge resistor chosen as 0.06 pu. Figure 5(a) shows that for normal operation of DFIG for variable wind speed the rotor speed is maintained constant. The performance of DFIG equipped with active crowbar under symmetrical 3 phase short circuit grid fault . the voltage drops 2 less than 20% of the nominal value at 0.5sec and the voltage sags lasts for 500ms. the rotor side current increased to 2 to 4 times of nominal value between 0.5s and 1s. in stead state the D.C link voltage is maintained at 1200V by the grid side converter. During the fault condition the threshold value of rotor current and DC voltage are set as 1.5pu and 1400V resp. from fig(b) to (c) shows the operation of DFIG without crowbar and BESS. From fig (d) to (g) shows the operation of DFIG with crowbar and BESS. Fig (h) shows the operation of BESS during fault condition i.e., State of Charge(SOC), current (I), Voltage (V). fig (i) shows the switching operation of crowbar during fault interval. fig 6 shows the different switching operation of crowbar in different fault condition that is LLL, LLLG, LLG, LL , LG faults. In the compartive study for different faults LG fault is least severe for that reason there is no crowbar switching .





 $Fig.5b \ Operation \ of DFIG \ FOR \ LLL \ fault \ (dc-link \ \& \ rotor \ current) \ without \ crowbar.$ 

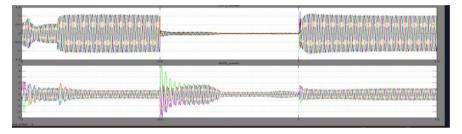



Fig.5c Operation of DFIG FOR LLL fault (V-B575 & I-B575) without crowbar.

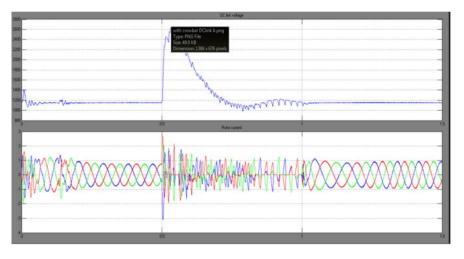



Fig.5d Operation of DFIG FOR LLL fault (dc-link & rotor current) with crowbar.

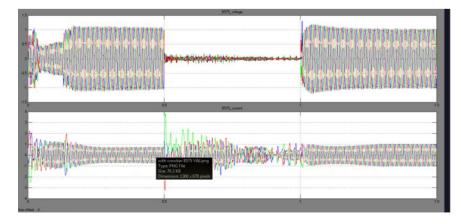



Fig.5e Operation of DFIG FOR LLL fault (V-B575 & I-B575) with crowbar.

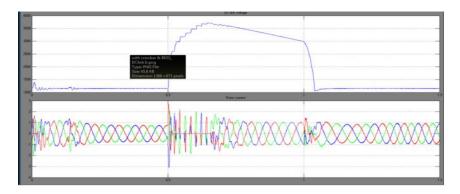



Fig 5f Operation of DFIG FOR LLL fault(DC-link & rotor current) with crowbar & BESS.

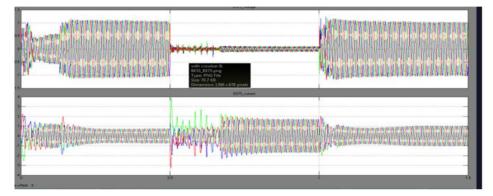



Fig.5g Operation of DFIG FOR LLL fault (V-B575 & I-B575) with crowbar & BESS.

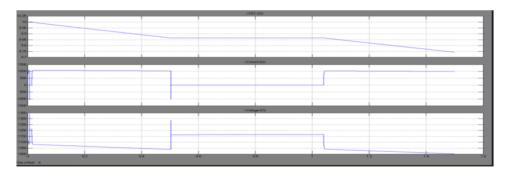



Fig.5h Operation of DFIG FOR LLL fault with crowbar & BESS Battery (SOC,I,V).

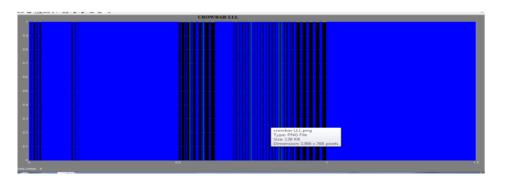



Fig.5i Operation of DFIG FOR LLL fault (CROWBAR SWITCHING INSTANT).



LG fault crowbar switching

#### V. CONCLUSIONS.

The mentioned control staregy of the Active Crowbar are not same as conventional 1, which can auto - switching the crowbar according to the size of rotor current .A combined protection and control startegy including Active Crowbar and Battery Energy Storage System has been presented to enhance the LVRT capability of a Wind turbine driven by DFIG, this paper also presented a BESS connected to DC bus which is controlled to attenuate the DC voltage ripple via absorbing the redundant power stored in DC link capacitor during power system on fault condition which can protect the DC side capacitor, does improved LVRT capability. The 9MW DFIG wind turbine system developed in simulink with a combined control startegy. Simulation results shows that the combined protection and control statergy can well protected the rotor side converter and the DC side capacitor during the power system on fault condition, thereby beter improved LVRT capability. And a compartive study of crowbar switching is analysed for different fault condition i.e., LLL, LLLG, LLG, LL, LG Faults according to its size of rotor current. Future work will be done to saaatisfy the grid requirement power compensation of DFIG operating undergo grid fault and also to reduce harmonics in the system.

#### REFERENCES

- [1] S. Muller, M. Dei, and R. W. Doncker, "Doubly fedinduction generator systems for wind turbines," IEEE Industry Applications Maganize, vol.8, Iss. 3, pp. 26 - 33, May-June 2002.
- [2] R. Datta and V. T. Ranganathan, "Variable-speed windpower generation using doubly fed wound rotor induction- a comparison with alternative schemes,' IEEE Trans. Energy Conversion, vol. 17, no. 3, pp. 414-421, Sept.2002.
- Ireland National Grid. Wind farm power station grid code provisions (2004)[EB/OL]. [3]
- E. Koutroulis, D. Kolokotsa, and G. Stravrakakis,"Optimal design and economic evaluation of a battery energy storage system for [4] It maximization of the energygenerated by wind farms in isolated electric grids," *WindEngineering*, vol. 33, pp. 55-81, 2009. J. Zhenhua and Y. Xunwei, "Modeling and Control of anIntegrated Wind Power Generation and Energy Storage
- [5]
- System," in IEEE Power Energy Society General Meeting, 2009.
- S. Arnalte and J. C. Burgos, "Direct Torque Control of aDoubly-Fed Induction Generator for variable speed wind [6]
- turbines," Electric Power Components and Systems, vol.30, pp. 199-216, 2002.
- X. Dawei, R. Li, P. J. Tavner, and S. Yang, "Control of a doubly fed induction generator in a wind turbine during grid fault ride-[7] through," IEEE Transactions on Energy Conversion, vol. 21, pp. 652-662, 2006.

Fig.6 Comparison between 'with', 'without crowbar' and BESS operation for LLL fault .